Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Korean Circulation Journal ; : 535-547, 2023.
Article in English | WPRIM | ID: wpr-1002007

ABSTRACT

Background and Objectives@#Veno-arterial extracorporeal membrane oxygenation (VAECMO) as a bridge to eventual heart transplantation (HT) is increasingly used worldwide.However, the effect of different VA-ECMO types on HT outcomes remains unclear. @*Methods@#This was a retrospective observational study of 111 patients receiving VA-ECMO and awaiting HT. We assessed 3 ECMO configuration groups: peripheral (n=76), central (n=12), and peripheral to central ECMO conversion (n=23). Cox proportional hazards regression and landmark analysis were conducted to analyze the effect of the ECMO configuration on HT and in-hospital mortality rates. We also evaluated adverse events during ECMO support. @*Results@#HT was performed in the peripheral (n=48, 63.2%), central (n=10, 83.3%), and conversion (n=11, 47.8%) ECMO groups (p=0.133) with a median interval of 10.5, 16, and 30 days, respectively (p<0.001). The cumulative incidence of HT was significantly lower in the conversion group (hazard ratio, 0.292, 95% confidence interval, 0.145–0.586, p=0.001).However, there was no difference in in-hospital mortality (log-rank p=0.433). In the landmark analysis, in-hospital mortality did not differ significantly among the 3 groups.Although we did note a trend toward lower HT in the conversion group, the difference was not statistically significant. Surgical site bleeding occurred mainly in the central, while limb ischemia occurred mainly in the peripheral groups. @*Conclusions@#We suggest that if patients are being stably supported with their initial ECMO configuration, whether it is central or peripheral, it should be maintained, and ECMO conversion should only be cautiously performed when necessary.

2.
Korean Circulation Journal ; : 179-181, 2020.
Article in English | WPRIM | ID: wpr-786219

ABSTRACT

No abstract available.


Subject(s)
Angiography , Coronary Vessels
3.
Diabetes & Metabolism Journal ; : 581-591, 2020.
Article | WPRIM | ID: wpr-832338

ABSTRACT

Background@#Ceramides are associated with metabolic complications including diabetic nephropathy in patients with diabetes.Recent studies have reported that podocytes play a pivotal role in the progression of diabetic nephropathy. Also, mitochondrial dysfunction is known to be an early event in podocyte injury. Thus, we tested the hypothesis that ceramide accumulation in podocytes induces mitochondrial damage through reactive oxygen species (ROS) production in patients with diabetic nephropathy. @*Methods@#We used Otsuka Long Evans Tokushima Fatty (OLETF) rats and high-fat diet (HFD)-fed mice. We fed the animals either a control- or a myriocin-containing diet to evaluate the effects of the ceramide. Also, we assessed the effects of ceramide on intracellular ROS generation and on podocyte autophagy in cultured podocytes. @*Results@#OLETF rats and HFD-fed mice showed albuminuria, histologic features of diabetic nephropathy, and podocyte injury, whereas myriocin treatment effectively treated these abnormalities. Cultured podocytes exposed to agents predicted to be risk factors (high glucose, high free fatty acid, and angiotensin II in combination [GFA]) showed an increase in ceramide accumulation and ROS generation in podocyte mitochondria. Pretreatment with myriocin reversed GFA-induced mitochondrial ROS generation and prevented cell death. Myriocin-pretreated cells were protected from GFA-induced disruption of mitochondrial integrity. @*Conclusion@#We showed that mitochondrial ceramide accumulation may result in podocyte damage through ROS production.Therefore, this signaling pathway could become a pharmacological target to abate the development of diabetic kidney disease.

4.
Experimental & Molecular Medicine ; : 434-443, 2002.
Article in English | WPRIM | ID: wpr-13045

ABSTRACT

The release of neurotransmitter is regulated in the processes of membrane docking and membrane fusion between synaptic vesicles and presynaptic plasma membranes. Synaptic vesicles contain a diverse set of proteins that participate in these processes. Small GTP-binding proteins exist in the synaptic vesicles and are suggested to play roles for the regulation of neurotransmitter release. We have examined a possible role of GTP-binding proteins in the regulation of protein phosphorylation in the synaptic vesicles. GTPgammaS stimulated the phosphorylation of 46 kappa Da protein (p46) with pI value of 5.0-5.2, but GDPbetaS did not. The p46 was identified as protein interacting with C-kinase 1 (PICK-1) by MALDI-TOF mass spectroscopy analysis, and anti-PICK-1 antibody recognized the p46 spot on 2-dimensional gel electrophoresis. Rab guanine nucleotide dissociation inhibitor (RabGDI), which dissociates Rab proteins from SVs, did not affect phosphorylation of p46. Ca2+/ calmodulin (CaM), which causes the small GTP- binding proteins like Rab3A and RalA to dissociate from the membranes and stimulates CaM- dependnet protein kinase(s) and phosphatase, strongly stimulate the phosphorylation of p46 in the presence of cyclosporin A and cyclophylin. However, RhoGDI, which dissociates Rho proteins from membranes, reduced the phosphorylation of p46 to the extent of about 50%. These results support that p46 was PICK-1, and its phosphorylation was stimulated by GTP and Ca2+/CaM directly or indirectly through GTP-binding protein(s) and Ca2+/CaM effector protein(s). The phosphorylation of p46 (PICK-1) by GTP and Ca2+/CaM may be important for the regulation of transporters and neurosecretion.


Subject(s)
Animals , Rats , Calcium/metabolism , Calmodulin/metabolism , Carrier Proteins/chemistry , Guanine Nucleotide Dissociation Inhibitors/metabolism , Guanosine Triphosphate/metabolism , Molecular Weight , Monomeric GTP-Binding Proteins/metabolism , Phosphorylation/drug effects , Recombinant Fusion Proteins/chemistry , Synaptic Membranes/chemistry , Synaptic Vesicles/chemistry
5.
Experimental & Molecular Medicine ; : 220-225, 2001.
Article in English | WPRIM | ID: wpr-144649

ABSTRACT

Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.


Subject(s)
Cattle , Rats , Aging , Animals , Brain/metabolism , Calcium/pharmacology , Comparative Study , GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Molecular Weight , Phosphorylation/drug effects , Rats, Sprague-Dawley , Synaptic Membranes/metabolism , Synaptosomes/metabolism , cdc42 GTP-Binding Protein/biosynthesis , rab3A GTP-Binding Protein/metabolism , rab5 GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/biosynthesis
6.
Experimental & Molecular Medicine ; : 220-225, 2001.
Article in English | WPRIM | ID: wpr-144637

ABSTRACT

Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.


Subject(s)
Cattle , Rats , Aging , Animals , Brain/metabolism , Calcium/pharmacology , Comparative Study , GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Molecular Weight , Phosphorylation/drug effects , Rats, Sprague-Dawley , Synaptic Membranes/metabolism , Synaptosomes/metabolism , cdc42 GTP-Binding Protein/biosynthesis , rab3A GTP-Binding Protein/metabolism , rab5 GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL